The class-specific BCR tonic signal modulates lymphomagenesis in a c-myc deregulation transgenic model
نویسندگان
چکیده
Deregulation of c-myc by translocation onto immunoglobulin (Ig) loci can promote B cell malignant proliferations with phenotypes as diverse as acute lymphoid leukemia, Burkitt lymphoma, diffuse large B cell lymphoma, myeloma... The B cell receptor (BCR) normally providing tonic signals for cell survival and mitogenic responses to antigens, can also contribute to lymphomagenesis upon sustained ligand binding or activating mutations. BCR signaling varies among cell compartments and BCR classes. For unknown reasons, some malignancies associate with expression of either IgM or class-switched Ig. We explored whether an IgA BCR, with strong tonic signaling, would affect lymphomagenesis in c-myc IgH 3'RR transgenic mice prone to lymphoproliferations. Breeding c-myc transgenics in a background where IgM expression was replaced with IgA delayed lymphomagenesis. By comparison to single c-myc transgenics, lymphomas from double mutant animals were more differentiated and less aggressive, with an altered transcriptional program. Larger tumor cells more often expressed CD43 and CD138, which culminated in a plasma cell phenotype in 10% of cases. BCR class-specific signals thus appear to modulate lymphomagenesis and may partly explain the observed association of specific Ig classes with human B cell malignancies of differential phenotype, progression and prognosis.
منابع مشابه
The IgH 3’ regulatory region and c-myc-induced B-cell lymphomagenesis
Deregulation and mutations of c-myc have been reported in multiple mature B-cell malignancies such as Burkitt lymphoma, myeloma and plasma cell lymphoma. After translocation into the immunoglobulin heavy chain (IgH) locus, c-myc is constitutively expressed under the control of active IgH cis-regulatory enhancers. Those located in the IgH 3' regulatory region (3'RR) are master control elements o...
متن کاملInhibition of HMGcoA reductase by atorvastatin prevents and reverses MYC-induced lymphomagenesis.
Statins are a class of drugs that inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMGcoA) reductase, a critical enzyme in the mevalonate pathway. Several reports document that statins may prevent different human cancers. However, whether or not statins can prevent cancer is controversial due to discordant results. One possible explanation for these conflicting conclusions is that only some tumor...
متن کاملMYC levels govern hematopoietic tumor type and latency in transgenic mice.
Deregulated MYC expression has been implicated in the etiology of many human cancers, including hematopoietic malignancies. To explore the impact of widespread constitutive MYC expression in the hematopoietic compartment, we have used a vector containing regulatory elements of the Vav gene to generate transgenic mice. VavP-MYC mice are highly tumor-prone and the level of MYC was found to influe...
متن کاملSpecific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis.
Deregulation of the Myc pathway and deregulation of the Rb pathway are two of the most common abnormalities in human malignancies. Recent in vitro experiments suggest a complex cross-regulatory relationship between Myc and Rb that is mediated through the control of E2F. To evaluate the functional connection between Myc and E2Fs in vivo, we used a bitransgenic mouse model of Myc-induced T cell l...
متن کاملIdentification of novel Myc target genes with a potential role in lymphomagenesis.
The c-Myc transcription factor regulates a wide set of genes involved in processes such as proliferation, differentiation and apoptosis. Therefore, altered expression of Myc leads to deregulation of a large number of target genes and, as a consequence, to tumorigenesis. For understanding Myc-induced transformation, identification of these target genes is essential. In this study, we searched fo...
متن کامل